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Goal(s) for Today

1. Introduce the basic intuition behind linear regression.

2. Give an applied example and unpack it.
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Elsewhere on My Blog
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Elsewhere on My Blog
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Correlation to Linear Regression

Correlation has a lot of nice properties.

• It’s another “first step” analytical tool.

• Useful for detectingmulticollinearity.

• This is when two independent variables correlate so highly that no partial effect for either can

be summarized.

However, it’s neutral on what is x and what is y.

• It won’t communicate cause and effect.

Fortunately, regression can do that for us (under ideal conditions).
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Demystifying Regression

Does this look familiar?

y = mx + b
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Demystifying Regression

That was the slope-intercept equation.

• b is the intercept: the observed y when x = 0.

• m is the familiar “rise over run”, measuring the amount of change in y for a unit change in

x.
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Demystifying Regression

The slope-intercept equation is, in essence, the representation of a regression line.

• However, statisticians prefer a different rendering of the same concept measuring linear

change.

y = a + b(x)

The b is the regression coefficient that communicates the change in y for each unit change in

x.

• However, this is a deterministic function. We live in a stochastic world.
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A Full Statement of the Regression Formula

If you’ve followed that, we’re just going to add two more things:

ŷ = â + b̂(x) + e

…where:

• ŷ, â and b̂ are estimates of y, a, and b over the data.

• e is the error term.

• It contains random sampling error, prediction error, and predictors not included in the

model.

We can further extend this out by including more x variables into our equation.

• Mechanically: there’s a lot to unpack. Conceptually: not really (at this level).
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Getting a Regression Coefficient

How do we get a regression coefficient for more complicated data?

• Start with the prediction error, formally: yi − ŷ.

• Square them. In other words: (yi − ŷ)2

• If you didn’t, the sum of prediction errors would equal zero.

The regression coefficient that emerges minimizes the sum of squared differences ((yi − ŷ)2).

• Put another way: “ordinary least squares” (OLS) regression.
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An Applied Example: The Correlates of Tourism

Figure 1: I’ll be honest that a trip to the Canaries sounds mighty nice in February…
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An Applied Example: The Correlates of Tourism

Academic interest in the international relations/IPE of tourism may owe to H.P. Gray (1966).

• Tourism as a form of “soft power” projection.

• (i.e. you’ve seen the YouTube ads for Türkiye or Arsenal’s “Visit Rwanda” patch)

• Tourism-dependent countries have a lot of subtle risks.

• Behave like rentier states; economy is dependent on foreign receipts.

• Environmental sustainability concerns are paramount.

• Very sensitive to massive shocks like the pandemic or political violence.

Thus, tourism is a kind of barometer or measuring stick for important questions of

development and peace.

• ed. notice how I’m selling you on the value of doing this in the first place…
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A Simple Exercise

I gathered data from the World Bank’s repository for a simple cross-sectional exercise.

• DV: number of arrivals for international tourism (logged)

• IVs: conceptually (operationally) [expected effect]
• Ease of access/infrastructure for visitors (passengers carried by air transport, logged) [+]
• Relative price to USD (price level ratio of PPP to market exchange rate) [-]
• Economic development (GDP per capita, logged) [+]
• Political security (political stability/absence of violence, terrorism) [+]
• Dummy variable for “fragile/conflict affected states (FCAS)” [-]

I use the same lag and group-by fill I describe in the blog post I reference earlier.

• Referent year: 2019 (or shortly before it)
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The Model(s)

We’ll run two linear models.

1. Bivariate model with just relative price.

2. Full model with all the other stuff.
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Logged GDP per Capita Political Violence Est.

Logged Tourism Arrivals (DV) Logged Air Transport Pasengers Relative Price
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The price variable has relatively few countries that are pricier than the U.S. Some Oceania countries have few visitors and Syria was a conspicuously unsafe country at this time.

Faceted Histograms of the Important Variables

Data: World Bank Data repository, through various other places.
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Political Violence Est. Relative Price

Logged Air Transport Pasengers Logged GDP per Capita
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All relationships are positive. The, the relative price correlation is a bit surprising (prima facie). In all cases, the line drawn is the OLS line for a simple bivariate model.

Faceted Scatterplots of Bivariate Relationships

Data: World Bank Data repository, through various other places.
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Table 1: Cross-National Correlates of (Logged) International Tourism Arrivals

Bivariate Full Model

Relative Price 1.333* -1.565*

(0.664) (0.671)

Air Transport Passengers (Logged) 0.283***

(0.047)

GDP per Capita (Logged) 0.763***

(0.136)

Political Stability -0.631***

(0.182)

Fragile/Conflict-Affected State -1.360***

(0.366)

Intercept 14.358*** 5.216***

(0.392) (0.911)

Num.Obs. 149 149

R2 0.027 0.627

R2 Adj. 0.020 0.614

F 4.026 48.172

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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How to Interpret a Regression Table Like This

1. Find the variable(s) of interest.

2. Look for direction (positive/negative)

3. Look for “stars” (to determine statistical significance)
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Table 2: Cross-National Correlates of (Logged) International Tourism Arrivals

Bivariate Full Model

Relative Price 1.333* -1.565*

(0.664) (0.671)

Air Transport Passengers (Logged) 0.283***

(0.047)

GDP per Capita (Logged) 0.763***

(0.136)

Political Stability -0.631***

(0.182)

Fragile/Conflict-Affected State -1.360***

(0.366)

Intercept 14.358*** 5.216***

(0.392) (0.911)

Num.Obs. 149 149

R2 0.027 0.627

R2 Adj. 0.020 0.614

F 4.026 48.172

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Being More Careful with Our Takeaways

“Number goes (up/down); other number goes (up/down); has (no) stars” is fine when you’re

getting started.

• But let’s do more.

We need to be smart with how we communicate this.

• Our DV is log-transformed and so are a few of our IVs.

Our plan of attack:

1. Start with the two variables that are log-transformed.

2. Talk about the variables that aren’t log-transformed.
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The DV and IV are Both Log-Transformed

Air transport passengers: a 1% increase in IV coincides with estimated .283% increase in DV.

• Alternatively, less helpfully: a unit increase log(x) increases log(y) by an estimated .311.

GDP per capita: a 1% change in GDP per capita -> .763% change in tourism arrivals.

• Alternatively, with more precision: (1.01^(.763)-1)*100 = .762% change in tourism

arrivals for 1% increase in GDP per capita.

Be mindful of the percentages!

• “one percent change in x -> estimated (regression coefficient)% change in y”
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The DV is Log-Transformed, but the IVs are Not

Relative price (Full): a change from 0 to 1 in relative price -> est. -1.56% decrease in tourism

arrivals.

• Be mindful: 0 = conceptual extreme; 1 = same price level as the U.S.

Political stability: a change from 0 to 1 in political stability -> -.631% change in tourism arrivals.

• Alternatively: exp(-.631) = .532. A one-unit change in stability multiplies expected

tourism arrivals by .532.

• This interpretation works the same way for relative price because it’s not log-transformed.

FCAS: Being a FCAS (e.g. Sudan) versus not being one (e.g. Sweden) decreases est. international

tourism arrivals by est. 1.36%.

Here: unit changes in x -> (regression coefficient)% changes in y
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Dont’ Read Much into the Intercept

Don’t bother interpreting the intercept.

• Nominally, it tells you the estimated value of y when everything covariate is set to 0.

• In our case: a country has no air passengers, is infinitely cheaper than the U.S., has no

logged GDP per capita, has basically a middle level of political security and is not a FCAS.

There are advanced things you can do here, but don’t bother at this stage.

• Just know what this is ultimately communicating.
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The Goodness of Fit Statistics

R-square: proportion of variation in y accounted for in the model.

• In the bivariate model, it’s quite literally Pearson’s r, squared.

Adj. R-square: Includes a downweight for more (redundant) parameters.

• Consider this the “default” R-square for your linear model.

• The more junk you have in the model, the greater the separation between it and

R-square.

F: “overall model fit” against guessing the mean.

• I’m including this because it’s in the output. You’re free to ignore it.
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Assumptions and Diagnostics

There are myriad assumptions of OLS. The ones we impress on you:

• L: the outcome ymodel is a “l”inear (and additive) function of the regressors.

• I: the error term is “i”ndependent/not correlated across observations.

• N: the error term is “n”ormally distributed.

• E: the error term has “e”qual/constant variance (i.e. no heteroskedasticity).

Let me bore you with L and N at this round.

• Save E for me tormenting you in the C-paper stage.

• I will matter a great deal for more advanced uses (i.e. MA-level).
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Diagnostics You Should Run

1. Fitted-residual plot (overall, and/or by regressor)

• This is the most “bang for your buck” OLS diagnostic. You should always run it.

2. Residual density plot (or QQ plot)

• Useful for the N part, for as unimportant as that assumption mostly is.
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The linear line is flat at 0 by definition. Ideally a LOESS smoother agrees with it, but does not here. I don't see a heteroskedasticity concern, fwiw.

A Fitted-Residual Plot of Our Full Model
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At most, I see some issues in the air passengers variable. Tail observations will do what they do.

A Fitted-Residual Plot Won't Tell You Where Non-Linearity Is; This Plot Can Help

29/32



0.0

0.1

0.2

0.3

-3 -2 -1 0 1 2 3

Distribution of Residuals

D
en

si
ty

In practice, this is the least important of OLS' major assumptions. It doesn't hurt to look, though.

A Residual Density Plot Can Assess Whether Your Residuals Approximate a Normal Distribution
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Conclusion

There’s a lot I crammed into this lecture, but:

• If you remember the slope-intercept equation, the intuition behind linear regression isn’t

much.

• OLS gives you the line of best fit that minimized squared prediction errors.

• You gotta get comfortable interpreting regression output.

• Logarithmic transformations proportionalize changes on their raw scale.

• This might take some getting used-to, but you should know it.

• I’ll extend grace as you get started, but do wrestle with it. Economists definitely do.

• Some parts/assumptions of the linear model are more important than others.

31/32



Table of Contents

Introduction

The Linear Model and OLS

Demystifying, with the Quickness

An Applied Example: The Correlates of Tourism

How to Interpret Regression Output

The Intercept and Goodness of Fit Notes

Assumptions and Diagnostics

Conclusion

32/32


	Introduction
	The Linear Model and OLS
	Demystifying, with the Quickness
	An Applied Example: The Correlates of Tourism
	How to Interpret Regression Output
	The Intercept and Goodness of Fit Notes
	Assumptions and Diagnostics

	Conclusion
	

